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ABSTRACT: A central goal of modern infectious disease research is to discover safe
prophylactic vaccines that can prevent infection. When this is not possible, or when
preventive vaccines are still in development, it is critical to have interventions that can
mitigate the spread of the disease both within infected individuals and in the
population. In this short review, we explore the recent history of therapeutic antibody
use, highlighting antibodies used over the last five years to treat COVID-19. We
outline some of the challenges in developing antibodies rapidly in response to
pandemic threats and suggest that emerging technologies for AI-driven design may
offer exciting opportunities for the development of a broad class of protein therapies.

■ INTRODUCTION
Some of the major pandemics in the last two millennia have
included the Justinian plague in 541 AD, thought to have killed
about half of the world’s population; the Black Death in 1340
AD, which killed about a quarter of the world’s population;
and the Spanish flu in 1918, which took the lives of ∼50
million people.1,2 The death toll from the recent COVID-19
pandemic is thought to be at least 6 million, while HIV/AIDS
has taken the lives of nearly 40 million people over the last four
decades.3−5 Vaccines, when safe and effective, are the best
approach to preventing infection or severe disease. However,
when vaccines are not an option due to the rapid emergence of
diseases such as SARS-CoV-2 or HIV/AIDS, ready-to-deploy
therapies can be used to prevent infection or treat disease in
vulnerable populations. There are several examples of small
molecules being successful in the treatment of infectious
diseases, such as the HAART treatment for HIV/AIDS,6 but in
this review, we focus on antibody-based therapies.
Antibodies have several potential advantages over small

molecules, including their high selectivity and the advance-
ments in screening technology that allow for the rapid
identification of high-affinity binders. Recent advances in
computational tools, including AI, may enable the speedy
development of early antibody leads, and highly effective
antibodies can be identified quickly from convalescent plasma,
as was the case with the antibody Bamlanivimab7 for the
treatment of COVID-19. Additionally, the Fc component of
antibodies can provide a serum half-life of weeks, which allows
for passive protection using antibodies. This may be necessary
for immunocompromised individuals who do not respond to

traditional vaccines. One example is the use of Palivizumab and
Nirsevimab for the prevention or treatment of Respiratory
Syncytial Virus (RSV) infection in children under 1 year.8,9 As
mentioned above, small-molecule antiviral drugs have been
used extensively to control disease spread, especially for viral
diseases such as HIV/AIDS and influenza.10 Therapeutic
antibodies have also been highly effective for the treatment of
infectious diseases because they can target pathogens directly
while minimizing the impact on the host’s biological systems.
In this article, we explore the journey of therapeutic antibodies
from their inception to current applications and look ahead to
their future potential in combating infectious diseases.
Therapeutic antibodies were first developed with the

emergence of monoclonal antibody (mAb) technology in the
1970s.11 Because these antibodies were generated in mice, they
frequently triggered immune reactions in humans. In the early
1990s, this limitation was addressed by humanizing these
antibodies with the development of Rituximab in 1993.12

Rituximab, which targets the CD20 antigen, demonstrated
efficacy in treatment of B-cell non-Hodgkin’s lymphoma.12

These advances were extended to infectious diseases with the
development of Palivizumab that was approved in 1998 to
prevent RSV infection and significantly reduced hospital
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admissions.8 More recently, FDA approved Inmazeb in 2020,
which reduced mortality in patients infected by Ebola in the
Democratic Republic of the Congo.13

In the last few decades, we have seen an increased incidence
of viral outbreaks, with the growing prevalence of air travel and
greater interactions between humans, animals, and the
environment as contributing factors. Viral outbreaks that
might have been contained to a local area a century ago can
now spread globally within a few hours; therefore, containment
becomes far more challenging. Additionally, improvements in
diagnostics and reporting allow for the identification of
outbreaks that may have gone undetected previously. While
there are still only a handful of antibodies approved for use in
the treatment of infectious diseases, the number of approved
antibodies continues to increase, with approvals in the last 7
years almost matching the combined number of approvals in
all previous years.14 Recent approvals also include antibodies

targeting bacterial infections�for example, Bezlotoxumab,
approved to prevent recurrence of Clostridium dif f icile
infections, targets toxin B and significantly reduces recurrence
rates when used in combination with standard antibiotic
therapies.15 A timeline of the major viral outbreaks over the
last 50 years, as well as the steady increase in approved
antibody treatments, is presented graphically in Figure 1.

■ ANTIBODY DEVELOPMENT DURING THE
COVID-19 PANDEMIC

The COVID-19 pandemic provides a compelling example of
the potential for expedited therapeutic antibody development
against an emerging virus. Early in the COVID-19 pandemic,
the rapid development and emergency use approval of the
monoclonal antibody Bamlanivimab and the Casirivimab−
Imdevimab cocktail became effective avenues for treatment.16

Figure 1. Timeline of the emergence of Pandemics (top, red)2 and the initial FDA approval of therapeutic antibodies for infectious disease
(bottom, green) over the past 50 years.2 FDA Emergency Use Authorizations (EUAs) of therapeutics for infectious disease treatment are included
in this timeline.14 Nearly all antibodies for infectious disease have been approved within the last 10 years.

Figure 2. Relative prevalence of SARS-CoV-2 variant evolution (top) and the time frame for approved use for therapeutic antibodies (bottom)
throughout the COVID-19 pandemic.14 Variant proportion data from the United States were generated using data available at http://
covariants.org. Major variants, achieving greater than 50% prevalence (Alpha, Delta, and Omicron sublineages), are specifically labeled.
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These antibodies target the spike glycoprotein of the SARS-
CoV-2 virus and block viral entry. Bamlanivimab, in
combination with Etesevimab, was shown to reduce COVID-
19 hospitalizations and deaths by up to 70% in high-risk
patients when administered early.7 Unfortunately, with the
continuous emergence of mutations in the viral spike
glycoprotein, nearly all approved antibody therapies for
COVID-19 eventually became ineffective.17 Furthermore,
many newly discovered antibodies became ineffective before
they could be approved or shortly after their approval, as
summarized in Figure 2 and Table 1.
The majority of early monoclonal antibodies retained

effectiveness against the Alpha variant (B.1.1.7), but the Beta
(B.1.351) and Gamma (P.1) variants exhibited escape from
certain monoclonal treatments, such as Bamlanivimab, leading
to its discontinuation as a single therapeutic agent. Reduced
antibody efficiency against the Delta variant (B.1.617.2)
prompted a shift toward using antibody combinations. When
the Omicron variant and its sublineages emerged, the

significantly higher number of mutations in these variant
spike glycoproteins led to the complete loss of efficacy for most
single-agent and combination antibodies.17,18

■ ANTIBODY THERAPIES CURRENTLY IN THE CLINIC
Against the backdrop of antibody therapies for the treatment of
COVID-19, it is interesting to examine the antibodies currently
in clinical development at the preapproval stage for treating
various infectious diseases. Antibody drugs have represented a
growing fraction of FDA-approved drugs in the past decade
and account for about a third of the FDA-approved drugs in
the last five years.22 Nevertheless, there are still only a limited
number of Phase I, II, and III trials underway in the clinic
targeting infectious diseases (Figure 3). Clinical trials targeting
coronaviruses (including SARS-CoV-2) and HIV make up the
majority, with significantly fewer trials underway, even for
persistent viral threats such as influenza.
Most clinical trials underway utilize monoclonal antibodies

that were derived by immunization, and typically require

Table 1. Therapeutic Antibodies Approved during the COVID-19 Pandemic

Therapeutic Antibody
Months
with EUA Development and Efficacy Details

Bamlanivimab 5 Developed by AbCellera and Eli Lilly, this antibody was initially effective against prevalent SARS-CoV-2 lineages but was later found to
be less effective against later variants like Beta (B.1.351) and Gamma (P.1).7,17

Etesevimab 11 Used in combination with Bamlanivimab, this combination was effective against the original strain and some early variants but began to
lose effectiveness against later variants such as Delta.7,17,18

Casirivimab and
Imdevimab
(REGEN-COV)

14 This combination by Regeneron was effective against many of the earlier variants, including Alpha and Beta. However, its effectiveness
diminished with the emergence of the Omicron sublineages, which have multiple mutations in their spike glycoprotein.7,17,18

Sotrovimab 13 Initially, Sotrovimab was one of the few antibody therapies to retain activity against the Delta variant. Its efficacy against Omicron was
limited, and it was less effective against later sublineages of Omicron.18

Tixagevimab and
Cilgavimab
(EVUSHELD)

5 Developed by AstraZeneca, this combination was designed for pre-exposure prophylaxis and showed effectiveness against several early
variants but lost efficacy against Omicron sublineages�a broad theme across the efficacy of COVID-19 antibody therapeutics.18

Bebtelovimab 9 This antibody was developed by Eli Lilly as a follow up to Bamlanivimab to treat the emergence of the initial Omicron sublineage.
Bebtelovimab’s Emergency Use Authorization (EUA) was revoked due to the expectation of lack of efficacy against BQ.1 and BQ.1.1
sublineages.19

Vilobelimab Currently
approved

Developed by InflaRx, Vilobelimab blocks the activity of complement factor C5a and subsequently tampers the immune reaction to
SARS-CoV-2. Vilobelimab stands in contrast to all other EUA antibodies which target the SARS-CoV-2 spike protein.20

Pemivibart Currently
approved

Developed by Invivyd, Pemivibart is approved for prophylactic use in immunocompromised patients who are unlikely to mount an
adequate immune response to COVID-19 vaccination.21

Figure 3. Number of biologics in development in Phase I, II, or III clinical trials based on targeted disease indication. mAbs are shown in blue,
blood-derived polyclonal antibodies are shown in red, and recombinant proteins are shown in gray. The left inset shows a representation of the
three-dimensional structure of the H1N1 influenza virion derived from cryo-electron tomography illustrating the distribution of unliganded (green)
HA spikes and those bound to the C179 neutralizing antibody (blue) on the viral membrane (brick red).54 The right inset shows an atomic model
depicting the structure (PDB ID: 5JW4) of one HA spike bound to another broadly neutralizing antibody MEDI8852, with each protomer of the
HA trimer shown in different colors (dark purple, orange and green).55 The light and heavy chains of the MEDI8852 neutralizing antibody that
bind the highly conserved stem region are shown at the base of the spike in separate colors. Left inset reproduced with permission from ref. 54.
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expensive and time-consuming processes and advanced
manufacturing facilities. The median development time from
discovery to approval for antibody therapies in general has
been over 10 years,5 with some notable recent exceptions in
the context of COVID-19 therapeutics. The high cost of
producing antibodies during outbreaks can be especially
challenging in low- and middle-income countries.23 Further,
the rapid emergence of escape variants in major infectious
disease outbreaks is another major challenge for the develop-
ment and delivery of antibody treatments in a timely manner.
Solutions are already being explored to address some of

these challenges. One approach is the development of
bispecific and multispecific antibodies that bind to two or
more epitopes, which can be on different pathogens or also
different parts of the same pathogen. This can allow the
antibody to inhibit multiple pathways or engage distinct
cellular mechanism to treat diseases such as HIV-124 or
tuberculosis.25 Blocking multiple targets typically could slow
mutational escape, as a variant would need multiple escape
mutations to evolve resistance to more than one of the
targeting arms.26 Another promising approach is the design
and development of “universal” antibodies that target
conserved regions of viruses or bacteria, making them much
less susceptible to mutational escape during an infectious
disease outbreak. This strategy requires the identification of
highly conserved epitopes but can be difficult because highly
conserved epitopes are often buried within pathogenic
proteins, making them difficult to access.27,28 An excellent
example of this approach is the work to develop broadly
neutralizing antibodies that target the conserved stem region in
the influenza HA spike protein29 (Figure 3 inset). Accelerating
the identification of antibodies from survivors of infectious
diseases, in combination with the use of next-generation
sequencing (NGS) technologies, is yet another rapid path to
antibody discovery since these antibodies are potentially
already derisked from a safety perspective.30,31

Even with the emergency approval of antibody therapeutics
during the COVID-19 pandemic, over a year after discovery
was still required to obtain emergency approval. Because of the
rapid mutation rate of SARS-CoV-2, by the time these
therapies were approved, they were no longer effective against
the strains circulating at that time. One potential idea would be
to anticipate the future mutations through monitoring global
viral strain patterns, experimental evolution, and deep
mutation scanning to identify the potential strains with the
greatest likelihood of developing into a global threat.32 This
approach has been applied to vaccines to anticipate future
strains and could be extended to create a library of antibodies
ready to deploy when a new variant of concern is identified.33

Although not the focus of this review, it is important to note
that technologies for antibody discovery from patient samples
and immunization have seen dramatic advances over the past
decade.30,34 Rapid single-cell screening of both patient samples
and immunized animals has become routine. Cells producing
functional antibodies can be rapidly isolated and subsequently
sequenced. NGS approaches and advancements in display
technologies (phage, yeast, and mammalian display) have
combined to both accelerate and broaden therapeutic antibody
development.35,36

■ AI AND ANTIBODY DISCOVERY
Recent developments in artificial intelligence (AI) and its
application to biochemistry bring a whole new set of

opportunities that could further revolutionize the antibody
discovery process.37 Once approved therapies are deployed
widely, AI-based methods can integrate data from clinical trials
and real-world patient data to predict the outcomes of
antibody therapies across different populations.38 Additionally,
AI may help identify which combinations of antibodies and
other treatments (such as antivirals or antibiotics) are likely to
be most effective, make real-time adjustments to therapeutic
dosages, and suggest more effective therapeutic combinations.
But can AI be used to dramatically accelerate the speed of the
earliest stages of infectious disease therapeutic discovery? What
if it were possible to bypass the lengthy process of antibody
discovery that we currently have and rapidly design antibodies
on-the-fly, in silico, ready for large-scale manufacturing as new
antigens and new variants are identified? Is the collective
knowledge gained about antigen−antibody interactions and
the effects of various antibody therapies over the past 50 years
sufficient to apply emerging AI-based tools to discover and
deploy antibodies? If this can be done successfully and quickly,
it may be an effective way to manage the challenge of viral
escape.
Here, we explore this question in the context of the

revolution in protein structure prediction and design catalyzed
by the advent of tools such as AlphaFold and RFdiffusion.39,40

Numerous recent publications suggest that some degree of de
novo antibody design may be possible.40,41 A recent publication
reported generating antibody structures de novo using a fine-
tuned version of RFdiffusion trained on additional antibody−
antigen structure complexes; however, this method has a low
success rate, and the resulting low-affinity antibodies required
wet-lab-based affinity maturation to produce high-affinity
antibodies. Related publications and preprints suggest that
AI-driven design approaches may be more reliable if one could
start with the known structures of an existing antigen−
antibody pair, which lowers the degree of difficulty in
improving the binding strength of a given antibody.42−44 For
example, Desautels et al. recently demonstrated the recovery of
binding of an antibody against multiple SARS-CoV-2 Omicron
variants with the use of previously generated structures to
guide the antibody design.43 Another approach has employed
computational design principles45,46 to introduce mutations
into the known structure of proteins/antibodies and score
them subsequently, combined with AI methods to select
specific combinations of mutations from an exhaustive list of
single-point mutations.44

To compare the predictive accuracy of AlphaFold3�the
current state-of-the-art tool in structure prediction�we tested
its performance on various reported protein complexes. These
included 100 structures each for Fab, VHH, and scFv
antibodies targeting the SARS-CoV-2 receptor-binding domain
(RBD), influenza (HA1 or HA2), and HIV glycoproteins. For
the Fab complexes, we focused exclusively on Fab-SARS-CoV-
2 RBD complexes. Additionally, we assessed prediction
accuracy for two other classes of complexes: those bound to
designed ankyrin repeat proteins (DARPins) (limited to a
sample size of 48 due to the availability of this class of
structures in the Protein Data Bank) and 100 natural peptide
complexes targeting a variety of proteins.47 DARPins and
natural peptides were chosen to test the ability of AlphaFold3
to predict non-antibody protein−protein complexes. We
measured prediction accuracy using DockQ scores, which
evaluate the ligand root-mean-square deviation (LRMSD),
interface RMSD (iRMSD), and the fraction of native interfacial
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contacts (FNAT) that is maintained in the predicted complex
relative to the experimentally determined structures. The
DockQ score quantitatively measures the match between the
predicted and experimentally determined structures, with
values ranging from 0 (lowest accuracy) to 1 (highest
accuracy).42

A summary of the trends in prediction accuracy is presented
in Figure 4A. For the prediction of complexes with antibody-
based moieties (Fabs, scFvs, and VHHs), the resulting DockQ
scores show a wide range of variability in prediction success,
with many that are far from the experimentally observed
structures of the complexes. These results demonstrate the
known challenges that even the state-of-the-art prediction tool,
AlphaFold3, faces in predicting antibody−antigen com-
plexes.48,49 Among the antibody types, scFv predictions slightly
outperformed VHHs and Fabs, though not in a statistically
significant manner, suggesting comparable performance across
all three binder types. AlphaFold3 performs better with
DARPin complexes, but we observed the best performance
with the prediction of natural protein and peptide complexes.
In this latter class, binding typically is mediated via regular
structural elements such as α-helices and β-strands, in contrast
to the flexible complementarity-determining region (CDR)
loops involved in the binding of antibodies, providing a
plausible structural explanation for the differences in prediction
accuracy.
Another way to assess the feasibility of the de novo design of

antibodies is to evaluate the likelihood of generating the
correct amino acid sequence in the CDR to induce binding to
the target. The computational tool that has demonstrated the
greatest success so far in addressing this “inverse folding”

problem (i.e., the problem of de novo generation of a successful
binder) is ProteinMPNN.50 Used by the Baker group in their
RFdiffusion workflow, ProteinMPNN has successfully gen-
erated small protein binders against numerous targets. The
performance of tools such as ProteinMPNN can be quantified
by the relative success with which the correct sequence of a
known binder can be recovered. The sequence recovery score
for ProteinMPNN was originally reported to be 52.4%.50

However, this value was obtained after training the model on
the entire PDB database, where the majority of structures of
complexes are unrelated to typical antigen−antibody complex
interfaces.
Restricting the foundation model to using a database

containing only the known structures of antigen−antibody
complexes can provide a more specific assessment of the
accuracy of sequence recovery for antigen−antibody com-
plexes. This strategy can improve outcomes and has recently
been applied to some inverse folding models, such as
AbMPNN for ProteinMPNN51 or Antifold for ESM-IF1.52

The improvements in these instances were modest, but the
significant diversity in the nature and folded structure of the
antigens may have limited the general applicability of this
approach. To assess whether an even finer tuning of the data
set could improve sequence predictions, we tested whether we
could enhance the success of sequence recovery by restricting
the training to a subset of similar antigen−antibody complexes
where there is minimal structural variation in the antigen.
Using a reference data set of 200 published RBD-antibody
complexes at reported resolutions higher than 3.2 Å, we fine-
tuned ProteinMPNN50 and LM-Design, a combined protein
language model that uses ProteinMPNN to inform structure.53

Figure 4. (A) Comparison of the prediction accuracy of AlphaFold3 for different binder types assessed using DockQ scores. The column heights
and error bars for each group represents the mean and standard deviations, respectively. Each point in the graph represents the score for a single
complex. The number of samples (N) is shown at the bottom for each group. (B, C) Representative predicted structures, with the antigen shown in
gold, the predicted binder in red and the experimentally determined structure in cyan. Panel (B) structures are for VHH, scFv, and Fab binders and
Panel (C) structures are for protein/peptide binders. The top row of structures in panels (B, C) show selected examples with DockQ scores <0.23
where there are large deviations between the predicted and experimentally observed structures, while the bottom row of structures show selected
examples with DockQ scores >0.80 where there is a close match between the predicted and experimentally observed structures. (D) Sequence
recovery (percent of correct amino acids in the prediction as compared to ground truth structures) from 1000 CDR H3 predictions of a SARS-
CoV2 RBD binding antibody using vanilla (blue) or fine-tuned (teal) ProteinMPNN and LM-Design.
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Both of these models were used to predict residues in CDR H3
of an RBD-binding antibody that was not included in the
training set. We observed a slight improvement in the accuracy
with which the correct sequence can be recovered by using this
more restrictive data set for training (Figure 4B).
These computational experiments, as well as the published

literature to date, suggest that the successful de novo prediction
of antibody binders is a field still in its infancy. However, the
pace of progress is rapid, as evidenced by increasingly
sophisticated models being reported. The slight increase we
observe in the success of sequence recovery (Figure 4B) using
a relatively small set of closely related structures leads to the
intriguing hypothesis that there is room for further improve-
ment in the prediction of sequences that bind if the training
data set could be expanded, as the model can learn more from
the additional data to better capture the relationship between
sequence and structure. The data set of publicly available RBD
structures contains various mutations in the SARS-CoV-2 spike
protein that have emerged during the COVID-19 pandemic. It
is thus conceivable that doubling or tripling the number of
RBD-antibody complexes in the structural database may result
in meaningful improvements in the prediction of antibody
sequences that bind to future SARS-CoV-2 variants.

■ FUTURE PERSPECTIVE
Treatment of infectious diseases with therapeutic antibodies,
especially in the absence of a vaccine, could be an important
tool in our arsenal to treat infectious diseases. Integration of
next-generation sequencing, display technologies, and AI-based
methods could reduce the time required for development of
the antibodies and enhance the efficacy. The generation of
bispecific antibodies, which can engage more than one target
and/or influence multiple immune pathways also presents new
therapeutic possibilities. However, traditional antibody discov-
ery workflows and timelines are inherently reactive and not
conducive to proactively developing therapies in response to a
pandemic. To prepare for future pandemics, it will be essential
to develop effective proactive approaches that enable a rapid
response. In all likelihood, the next pandemic will likely arise
from a known virus family; therefore, the generation of a large
libraries of neutralizing antibodies against each family could be
a good strategy to roll out therapeutics rapidly. However, one
of the greatest challenges during the COVID-19 pandemic was
the rapid rate at which escape mutations emerged, resulting in
a quick loss of efficacy of vaccines and antibody therapies over
the course of months. As the success of AI-driven predictive
strategies improves, in a few years, it may be possible to
generate antibodies “on-the-fly” by effectively leveraging
existing databases of structures of related antigens. An even
more ambitious goal would be to extend this further and use
AI-based methods to anticipate viral evolution and pre-
emptively design an arsenal of potential therapeutic antibody-
or protein-based therapeutics to enable health care providers to
switch to a proactive response for viral outbreaks. We do not
know when the next pandemic will strike, but our success in
managing future pandemics will depend on having a multi-
plicity of both prophylactic and therapeutic strategies readily
available.
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